Question Q1.25

(a) If $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}=0$, does it necessarily follow that $A=0$ or $B=0$? Explain. (b) If $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=\mathbf{0}$, does it necessarily follow that $A=0$ or $B=0$? Explain.

Solution

(a) No, because if $\mathbf{A} \cdot \mathbf{B}=A B \cos \theta=0$, then

$$
\begin{aligned}
A=0 \quad \text { or } \quad B=0 \quad \text { or } \quad \cos \theta & =0 \\
\theta & =90^{\circ} .
\end{aligned}
$$

(b) No, because if $\mathbf{A} \times \mathbf{B}=\mathbf{0}$, then $|\mathbf{A} \times \mathbf{B}|=A B \sin \theta=0$, which means

$$
\begin{aligned}
A=0 \quad \text { or } \quad B=0 \quad \text { or } \quad \sin \theta & =0 \\
\theta & =0^{\circ} .
\end{aligned}
$$

